Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.07.23295190

ABSTRACT

Excessive inflammation defines COVID-19 pathophysiology. Neutrophils represent a critical arm of the innate immune response and are major mediators of inflammation. We conducted transcriptomic profiling of polymorphonuclear cells (PMNs), consisting mainly of mature neutrophils, which revealed a pronounced type I interferon (IFN-I) gene signature in severe COVID-19, compared to mild COVID-19 and healthy controls. Notably, low-density granulocytes (LDGs) from severe COVID-19 did not exhibit this signature and displayed a distinct immature neutrophil phenotype. PMNs from severe COVID-19 patients showed heightened nigericin-induced caspase1 activation but reduced responsiveness to exogenous inflammasome priming. Interestingly, while mature neutrophils efficiently released IL-1? upon inflammasome activation, they were poor producers of IL-18. Furthermore, IFN-I emerged as a priming stimulus for neutrophil inflammasomes, which was confirmed in a COVID-19 mouse model. Overall, these findings underscore the crucial role of neutrophil inflammasomes in driving inflammation during severe COVID-19 and opens promising avenues for targeted therapeutic interventions to mitigate the pathological processes associated with the disease.


Subject(s)
COVID-19 , Inflammation
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.08.22279729

ABSTRACT

Here, we describe a scalable and automated, high-content microscopy-based, mini-immunofluorescence assay (mini-IFA) for serological testing i.e. detection of antibodies. Unlike conventional IFA, which often relies on the use of cells infected with the target pathogen, our assay employs transfected cells expressing individual viral antigens. The assay builds on a custom neural network-based image analysis pipeline for the automated and multiplexed detection of immunoglobulins (IgG, IgA, and IgM) in patient samples. As a proof-of-concept, we employed high-throughput equipment to set up the assay for measuring antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with spike (S), membrane (M), and nucleo (N) protein, and the receptor-binding domain (R) as the antigens. We compared the automated mini-IFA results from hundreds of patient samples to the visual observations of human experts and to the results obtained with conventional ELISA. The comparisons demonstrated a high correlation to both, suggesting high sensitivity and specificity of the mini-IFA. By testing pre-pandemic samples (N=500?) and those collected from patients with RT-PCR confirmed SARS-CoV-2 infection (N=???), we found mini-IFA to be most suitable for IgG and IgA detection. The results demonstrated N and S proteins as the ideal antigens, and the use of these antigens can serve to distinguish between vaccinated and infected individuals. The assay principle described enables detection of antibodies against practically any pathogen, and none of the assay steps require high biosafety level environment. The simultaneous detection of multiple Ig classes allows for distinguishing between recent from past infection.


Subject(s)
Coronavirus Infections , COVID-19
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1199296.v1

ABSTRACT

Two COVID-19 mRNA and two adenovirus vector vaccines have been licensed in Europe and various vaccine combinations and dosing strategies have been exploited to maximize the immunity against COVID-19. Here, we show that among health care workers (n=328) two doses of BNT162b2, mRNA-1273, or ChAdOx1 as also a combination of an adenovirus vector and mRNA vaccines induces equally high levels of anti-SARS-CoV-2 spike antibodies and neutralizing antibodies against B.1 and B.1.617.2 when administrated with a long 12-week dose interval. Two doses of BNT162b2 with a short 3-week interval induce 2-3-fold lower titers of neutralizing antibodies compared to the long interval. Third mRNA vaccine dose for the short dose interval group increased the antibody levels 4-fold compared to the levels after the second dose. Importantly, sera from all three-times vaccinated neutralized B.1.1.529 (Omicron). The data indicates that a third COVID-19 mRNA vaccine dose efficiently induces cross-protective neutralizing antibodies against multiple variants.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.28.21260990

ABSTRACT

Background. Validation and standardization of accurate serological assays are crucial for the surveillance of the coronavirus disease 2019 (COVID-19) pandemic and population immunity. Methods. We describe the analytical and clinical performance of an in-house fluorescent multiplex immunoassay (FMIA) for simultaneous quantification of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein and spike glycoprotein. Furthermore, we calibrated IgG-FMIA against World Health Organisation (WHO) International Standard and compared FMIA results to an in-house enzyme immunoassay (EIA) and a microneutralisation test (MNT). We also compared the MNT results of two laboratories. Results. IgG-FMIA displayed 100% specificity and sensitivity for samples collected 13-150 days post-onset of symptoms (DPO). For IgA- and IgM-FMIA 100% specificity and sensitivity were obtained for a shorter time window (13-36 and 13-28 DPO for IgA- and IgM-FMIA, respectively). FMIA and EIA results displayed moderate to strong correlation, but FMIA was overall more specific and sensitive. IgG-FMIA identified 100% of samples with neutralising antibodies (NAbs). Anti-spike IgG concentrations correlated strongly ({rho}=0.77-0.84, P<2.2x10-16) with NAb titers. The NAb titers of the two laboratories displayed a very strong correlation ({rho}=0.95, P<2.2x10-16). Discussion. Our results indicate good correlation and concordance of antibody concentrations measured with different types of in-house SARS-CoV-2 antibody assays. Calibration against WHO international standard did not, however, improve the comparability of FMIA and EIA results. keywords: SARS-CoV-2, COVID-19, antibody, immunoassay, nucleoprotein, spike glycoprotein, WHO international standard, neutralising antibodies, microneutralisation, receptor-binding domain


Subject(s)
Coronavirus Infections , COVID-19
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-343388.v1

ABSTRACT

As SARS-CoV-2 has been circulating for over a year, dozens of vaccine candidates are under development or in clinical use. The BNT162b2 mRNA COVID-19 vaccine induces spike protein-specific neutralizing antibodies associated with protective immunity. The emergence of the B.1.1.7 and B.1.351 variants has raised concerns of reduced vaccine efficacy and increased re-infection rates. Here we show, that after the second dose, the sera of BNT162b2-vaccinated health care workers (n = 180) effectively neutralize the SARS-CoV-2 variant with the D614G substitution and the B.1.1.7 variant, whereas the neutralization of the B.1.351 variant is five-fold reduced. Despite the reduction, 92% of the vaccinees have a neutralization titre of >20 for the B.1.351 variant indicating some protection. The vaccinees’ neutralization titres exceeded those of recovered non-hospitalized COVID-19 patients. Our work provides strong evidence that the second dose of the BNT162b2 vaccine induces efficient cross-neutralization of SARS-CoV-2 variants currently circulating in the world.


Subject(s)
COVID-19
7.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-279522.v1

ABSTRACT

SARS-CoV-2 infection raises neutralizing antibodies (NAbs). While studies have shown differing NAb kinetics, they generally point to the antibody arm of immunity providing most recoverees protection against contemporary strains. However, the effect against newly emerged variants of concern (VoCs) has remained uncertain. Here, applying neutralization tests to paired recoveree sera (N=38) of spring 2020 COVID-19 patients with clinical isolates of wildtype D614G and VoC1 and -2 strains (B.1.1.7 and B 1.351) from Finland, we show that NAbs of these patients are equally effective in inhibiting both contemporary and VoC1 strains whereas inhibition of VoC2 is reduced 8-fold (p<0.001) with 50% of sera failing to show NAbs. Our results align with an increased ability of VoC2 to reinfect previously SARS-CoV-infected populations.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-189394.v1

ABSTRACT

There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. In the present study, we found that recombinant human interferon-alpha (IFNa) triggered cell intrinsic and extrinsic antiviral responses and reduced replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human lung epithelial Calu-3 cells. However, IFNa alone was insufficient to completely abolish SARS-CoV-2 replication. Combinations of IFNa with camostat, remdesivir, EIDD-2801, cycloheximide or convalescent serum showed strong synergy and effectively inhibited SARS-CoV-2 infection. Additionally, we demonstrated synergistic antiviral activity of IFNa2a with pimodivir against influenza A virus (FluAV) infection in human lung epithelial A549 cells, as well as of IFNa2a with lamivudine against human immunodeficiency virus 1 (HIV-1) infection in human TZM-bl cells. Our results indicate that IFNa2a-based combinational therapies help to reduce drug dose and improve efficacy in comparison with monotherapies, making them attractive targets for further pre-clinical and clinical development.


Subject(s)
Coronavirus Infections , HIV Infections , Addison Disease , COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.03.424883

ABSTRACT

Here, we demonstrate that our anti-sepsis and COVID-19 drug candidate Rejuveinix (RJX) substantially improves the survival outcome in the LPS-GalN animal model of sepsis and multi-organ failure. One hundred (100) percent (%) of untreated control mice remained alive throughout the experiment. By comparison, 100% of LPS-GalN injected mice died at a median of 4.6 hours. In contrast to the invariably fatal treatment outcome of vehicle-treated control mice, 40% of mice treated with RJX (n=25) remained alive with a 2.4-fold longer median time survival time of 10.9 hours (Log-rank X2=20.60, P<0.0001). Notably, RJX increased the tissue levels of antioxidant enzymes SOD, CAT, and GSH-Px, and reduced oxidative stress in the brain. These findings demonstrate the clinical impact potential of RJX as a neuroprotective COVID-19 and sepsis drug candidate.


Subject(s)
COVID-19 , Multiple Organ Failure , Sepsis
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.04.424792

ABSTRACT

COVID-19 currently represents a major public health problem. Multiple efforts are being performed to control this disease. Vaccinations are already in progress. However, no effective treatments have been found so far. The disease is caused by the SARS-CoV-2 coronavirus that through the Spike protein interacts with its cell surface receptor ACE2 to enter into the host cells. Therefore, compounds able to block this interaction may help to stop disease progression. In this study, we have analyzed the effect of compounds reported to interact and modify the activity of ACE2 on the binding of the Spike protein. Among the compounds tested, we found that hydroxyzine could inhibit the binding of the receptor-binding domain of Spike protein to ACE2 in a qualitative in vitro assay. This finding supports the reported clinical data showing the benefits of hydroxyzine on COVID-19 patients, raising the need for further investigation into its effectiveness in the treatment of COVID-19 given its well-characterized medical properties and affordable cost.


Subject(s)
COVID-19
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.05.425331

ABSTRACT

There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. In the present study, we found that recombinant human interferon-alpha (IFNa) triggers intrinsic and extrinsic cellular antiviral responses, as well as reduces replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. Although IFNa alone was insufficient to completely abolish SARS-CoV-2 replication, combinations of IFNa with remdesivir or other antiviral agents (EIDD-2801, camostat, cycloheximide, or convalescent serum) showed strong synergy and effectively inhibited SARS-CoV-2 infection in human lung epithelial Calu-3 cells. Furthermore, we showed that the IFNa-remdesivir combination suppressed virus replication in human lung organoids, and that its single prophylactic dose attenuated SARS-CoV-2 infection in lungs of Syrian hamsters. Transcriptome and metabolomic analyses showed that the combination of IFNa-remdesivir suppressed virus-mediated changes in infected cells, although it affected the homeostasis of uninfected cells. We also demonstrated synergistic antiviral activity of IFNa2a-based combinations against other virus infections in vitro. Altogether, our results indicate that IFNa2a-based combination therapies can achieve higher efficacy while requiring lower dosage compared to monotherapies, making them attractive targets for further pre-clinical and clinical development.


Subject(s)
COVID-19 , Coronavirus Infections , Severe Acute Respiratory Syndrome
12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.01.20224113

ABSTRACT

Accurate and rapid diagnostic tools are needed for management of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Antibody tests enable detection of individuals past the initial phase of infection and will help to examine possible vaccine responses. The major targets of human antibody response in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the spike glycoprotein (S) and nucleocapsid protein (N). We have developed a rapid homogenous approach for antibody detection termed LFRET (protein L-based time-resolved Forster resonance energy transfer immunoassay). In LFRET, fluorophore-labeled protein L and antigen are brought to close proximity by antigen-specific patient immunoglobulins of any isotype, resulting in TR-FRET signal generation. We set up LFRET assays for antibodies against S and N and evaluated their diagnostic performance using a panel of 77 serum/plasma samples from 44 individuals with COVID-19 and 52 negative controls. Moreover, using a previously described S construct and a novel N construct, we set up enzyme linked immunosorbent assays (ELISAs) for antibodies against SARS-CoV-2 S and N. We then compared the LFRET assays with these enzyme immunoassays and with a SARS-CoV-2 microneutralization test (MNT). We found the LFRET assays to parallel ELISAs in sensitivity (90-95% vs. 90-100%) and specificity (100% vs. 94-100%). In identifying individuals with or without a detectable neutralizing antibody response, LFRET outperformed ELISA in specificity (91-96% vs. 82-87%), while demonstrating an equal sensitivity (98%). In conclusion, this study demonstrates the applicability of LFRET, a 10-minute 'mix and read' assay, to detection of SARS-CoV-2 antibodies.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.11.20147157

ABSTRACT

BackgroundMost respiratory viruses show pronounced seasonality, but for SARS-CoV-2 this still needs to be documented. MethodsWe examined the disease progression of COVID-19 in 6,914 patients admitted to hospitals in Europe and China. In addition, we evaluated progress of disease symptoms in 37,187 individuals reporting symptoms into the COVID Symptom Study application. FindingsMeta-analysis of the mortality risk in eight European hospitals estimated odds ratios per one day increase in the admission date to be 0.981 (0.973-0.988, p<0.001) and per increase in ambient temperature of one degree Celsius to be 0.854 (0.773-0.944, p=0.007). Statistically significant decreases of comparable magnitude in median hospital stay, probability of transfer to Intensive Care Unit and need for mechanical ventilation were also observed in most, but not all hospitals. The analysis of individually reported symptoms of 37,187 individuals in the UK also showed the decrease in symptom duration and disease severity with time. InterpretationSeverity of COVID-19 in Europe decreased significantly between March and May and the seasonality of COVID-19 is the most likely explanation. Mucosal barrier and mucociliary clearance can significantly decrease viral load and disease progression, and their inactivation by low relative humidity of indoor air might significantly contribute to severity of the disease.


Subject(s)
COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.03.20121582

ABSTRACT

The immune response to SARS-CoV2 is under intense investigation, but not fully understood att this moment. Severe disease is characterized by vigorous inflammatory responses in the lung, often with a sudden onset after 5-7 days of stable disease. Efforts to modulate this hyperinflammation and the associated acute respiratory distress syndrome, rely on the unraveling of the immune cell interactions and cytokines that drive such responses. Systems-level analyses are required to simultaneously capture all immune cell populations and the many protein mediators by which cells communicate. Since every patient analyzed will be captured at different stages of his or her infection, longitudinal monitoring of the immune response is critical. Here we report on a systems-level blood immunomonitoring study of 39 adult patients, hospitalized with severe COVID-19 and followed with up to 14 blood samples from acute to recovery phases of the disease. We describe an IFNg-Eosinophil axis activated prior to lung hyperinflammation and changes in cell-cell coregulation during different stages of the disease. We also map an immune trajectory during recovery that is shared among patients with severe COVID-19.


Subject(s)
von Willebrand Disease, Type 3 , Lung Diseases , Respiratory Distress Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL